
Black holes and qubits 
While string theory and M-theory have yet to make readily 
testable predictions in high-energy physics, they could find 
practical applications in quantum-information theory. 
Résumé 
 
Trous noirs et qubits 
Quand deux domaines très différents de la physique théorique ont en commun les 
mêmes mathématiques, cela aboutit souvent à de nouvelles découvertes des deux 
côtés. Le concept d’intrication quantique, au cœur de la théorie de l’information 
quantique, a des applications dans les domaines de l’informatique quantique, de la 
téléportation, de la cryptographie et de la communication. Dans le monde de la 
gravité quantique, les trous noirs peuvent émettre de l’énergie du fait de l’effet 
Hawking. Malgré les disparités apparentes, il y a un rapport entre ces deux sujets. 
Cette correspondance s’avère même être la partie émergée d’un iceberg : 
l’exploration de la théorie des cordes et de la théorie M amène à de nouvelles 
découvertes sur la théorie de l’information quantique et inversement. 
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Quantum entanglement lies at the heart of quantum information theory (QIT), 
with applications to quantum computing, teleportation, cryptography and 
communication. In the apparently separate world of quantum gravity, the 
Hawking effect of radiating black holes has also occupied centre stage. Despite 
their apparent differences it turns out that there is a correspondence between 
the two (Duff 2007; Kallosh and Linde 2006). 
Whenever two disparate areas of theoretical physics are found to share the 
same mathematics, it frequently leads to new insights on both sides. Indeed, 
this correspondence turned out to be the tip of an iceberg: knowledge of 
string theory and M-theory leads to new discoveries about QIT, and vice 
versa. 
 
Bekenstein-Hawking entropy 
 
Every object, such as a star, has a critical size that is determined by its mass, 
which is called the Schwarzschild radius. A black hole is any object smaller 
than this. Once something falls inside the Schwarzschild radius, it can never 
escape. This boundary in space–time is called the event horizon. So the 
classical picture of a black hole is that of a compact object whose gravitational 
field is so strong that nothing – not even light – can escape. 
Yet in 1974 Stephen Hawking showed that quantum black holes are not 
entirely black but may radiate energy. In that case, they must possess the 
thermodynamic quantity called entropy. Entropy is a measure of how 



disorganized a system is and, according to the second law of thermodynamics, 
it can never decrease. Noting that the area of a black hole's event horizon can 
never decrease, Jacob Bekenstein had earlier suggested such a thermodynamic 
interpretation implying that black holes must have entropy. This Bekenstein–
Hawking black-hole entropy is given by one quarter of the area of the event 
horizon. 
Entropy also has a statistical interpretation as a measure of the number of 
quantum states available. However, it was not until 20 years later that string  
theory provided a microscopic explanation of this kind for black holes. 
 
Bits and pieces 
 
A bit in the classical sense is the basic unit of computer information and takes 
the value of either 0 or 1. A light switch provides a good analogy; it can either 
be off, denoted 0, or on, denoted 1. A quantum bit or "qubit" can also have 
two states but whereas a classical bit is either 0 or 1, a qubit can be both 0 
and 1 until we make a measurement. In quantum mechanics, this is called a 
superposition of states. When we actually perform a measurement, we will 
find either 0 or 1 but we cannot predict with certainty what the outcome will 
be; the best we can do is to assign a probability to each outcome. 
There are many different ways to realize a qubit physically. Elementary 
particles can carry an intrinsic spin. So one example of a qubit would be a 
superposition of an electron with spin up, denoted 0, and an electron with 
spin down, denoted 1. Another example of a qubit would be the superposition 
of the left and right polarizations of a photon. So a single qubit state, usually 
called Alice, is a superposition of Alice-spin-up 0 and Alice-spin-down 1, 
represented by the line in figure 1. The most general two-qubit state, Alice 
and Bob, is a superposition of Alice-spin-up–Bob-spin-up 00, Alice-spin-up–
Bob-spin-down 01, Alice-spin-down–Bob-spin-up 10 and Alice-spin-down–
Bob-spin-down 11, represented by the square in figure 1. 
Consider a special two-qubit state that is just 00 + 01. Alice can only measure 
spin up but Bob can measure either spin up or spin down. This is called a 
separable state; Bob's measurement is uncorrelated with that of Alice. By 
contrast, consider 00 + 11. If Alice measures spin up, so too must Bob, and if 
she measures spin down so must he. This is called an entangled state; Bob 
cannot help making the same measurement. Mathematically, the square in 
figure 1 forms a 2 × 2 matrix and a state is entangled if the matrix has a 
nonzero determinant. 
This is the origin of the famous Einstein–Podolsky–Rosen (EPR) paradox put 
forward in 1935. Even if Alice is in Geneva and Bob is millions of miles away in 
Alpha Centauri, Bob's measurement will still be determined by that of Alice. 
No wonder Albert Einstein called it "spooky action at a distance". EPR 
concluded rightly that if quantum mechanics is correct then nature is nonlocal, 
and if we insist on local "realism" then quantum mechanics must be 
incomplete. Einstein himself favoured the latter hypothesis. However, it was 
not until 1964 that CERN theorist John Bell proposed an experiment that 



could decide which version was correct – and it was not until 1982 that Alain 
Aspect actually performed the experiment. Quantum mechanics was right, 
Einstein was wrong and local realism went out the window. As QIT 
developed, the impact of entanglement went far beyond the testing of the 
conceptual foundations of quantum mechanics. Entanglement is now essential 
to numerous quantum-information tasks such as quantum cryptography, 
teleportation and quantum computation. 
 
Cayley's hyperdeterminant 
 
As a high-energy theorist involved in research on quantum gravity, string 
theory and M-theory, I paid little attention to any of this, even though, as a 
member of staff at CERN in the 1980s, my office was just down the hall from 
Bell's. 
My interest was not aroused until 2006, when I attended a lecture by 
Hungarian physicist Peter Levay at a conference in Tasmania. He was talking 
about three qubits Alice, Bob and Charlie where we have eight 
possibilities,000 , 001, 010, 011, 100, 101, 110, 111, represented by the cube 
in figure 1. Wolfgang Dür and colleagues at the University of Innsbruck have 
shown that three qubits can be entangled in several physically distinct ways: 
tripartite GHZ (Greenberger–Horne–Zeilinger), tripartite W, biseparable A-
BC, separable A-B-C and null, as shown in the left hand diagram of figure 2 
(Dür et al. 2000). 

 
Fig. 2. 

The GHZ state is distinguished by a nonzero quantity known as the 3-tangle, 
which measures genuine tripartite entanglement. Mathematically, the cube in 
figure 1 forms what in 1845 the mathematician Arthur Cayley called a 
"2 × 2 × 2 hypermatrix" and the 3-tangle is given by the generalization of a 
determinant called Cayley's hyperdeterminant. 
The reason this sparked my interest was that Levay's equations reminded me 
of some work I had been doing on a completely different topic in the mid-
1990s with my collaborators Joachim Rahmfeld and Jim Liu (Duff et al. 1996). 
We found a particular black-hole solution that carries eight charges (four 
electric and four magnetic) and involves three fields called S, T and U. When I 
got back to London from Tasmania I checked my old notes and asked what 
would happen if I identified S, T and U with Alice, Bob and Charlie so that the 
eight black-hole charges were identified with the eight numbers that fix the 
three-qubit state. I was pleasantly surprised to find that the Bekenstein–
Hawking entropy of the black holes was given by the 3-tangle: both were 



described by Cayley's hyperdeterminant. 
 
Octonions and super qubits 
 
According to supersymmetry, for each known boson (integer spin 0, 1, 2 and 
so on) there is a fermion (half-integer spin 1/2, 3 /2, 5/2 and so on), and vice 
versa. CERN's Large Hadron Collider will be looking for these superparticles. 
The number of supersymmetries is denoted by N and ranges from 1 to 8 in 
four space–time dimensions. 
CERN's Sergio Ferrara and I have extended the STU model example, which 
has N = 2, to the most general case of black holes in N = 8 supergravity. We 
have shown that the corresponding system in quantum-information theory is 
that of seven qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George), 
undergoing at most a tripartite entanglement of a specific kind as depicted by 
the Fano plane of figure 3. 
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The Fano plane has a strange mathematical property: it describes the 
multiplication table of a particular kind of number: the octonion. 
Mathematicians classify numbers into four types: real numbers, complex 
numbers (with one imaginary part A), quaternions (with three imaginary parts 
A, B, D) and octonions (with seven imaginary parts A, B, C, D, E, F, G). 
Quaternions are noncommutative because AB does not equal BA. Octonions 
are both noncommutative and nonassociative because (AB)C does not equal 
A(BC). 
Real, complex and quaternion numbers show up in many physical contexts. 
Quantum mechanics, for example, is based on complex numbers and Pauli's 
electron-spin operators are quaternionic. Octonions have fascinated 
mathematicians and physicists for decades but have yet to find any physical 
application. In recent books, both Roger Penrose and Ray Streater have 
characterized octonions as one of the great "lost causes" in physics. So we 
hope that the tripartite entanglement of seven qubits (which is just at the limit 
of what can be reached experimentally) will prove them wrong and provide a 
way of seeing the effects of octonions in the laboratory (Duff and Ferrara 
2007; Borsten et al. 2009a). 
In another development, QIT has been extended to super-QIT with the 
introduction of the superqubit, which can take on three values: 0 or 1 or $. 
Here 0 and 1 are "bosonic" and $ is "fermionic" (Borsten et al. 2009b). Such 



values can be realized in condensed-matter physics, such as the excitations of 
the t-J model of strongly correlated electrons, known as spinons and holons. 
The superqubits promise totally new effects. For example, despite 
appearances, the two-superqubit state $$ is entangled. Superquantum 
computing is already being investigated (Castellani et al. 2010). 
 
Strings, branes and M-theory 
 
If current ideas are correct, a unified theory of all physical phenomena will 
require some radical ingredients in addition to supersymmetry. For example, 
there should be extra dimensions: supersymmetry places an upper limit of 11 
on the dimension of space–time. The kind of real, four-dimensional world that 
supergravity ultimately predicts depends on how the extra seven dimensions 
are rolled up, in a way suggested by Oskar Kaluza and Theodor Klein in the 
1920s. In 1984, however, 11-dimensional supergravity was knocked off its 
pedestal by superstring theory in 10 dimensions. There were five competing 
theories: the E8 × E8 heterotic, the SO(32) heterotic, the SO(32) Type I, and 
the Type IIA and Type IIB strings. The E8 × E8 seemed – at least in principle – 
capable of explaining the elementary particles and forces, including their 
handedness. Moreover, strings seemed to provide a theory of gravity that is 
consistent with quantum effects. 
However, the space–time of 11 dimensions allows for a membrane, which 
may take the form of a bubble or a two-dimensional sheet. In 1987 Paul 
Howe, Takeo Inami, Kelly Stelle and I showed that if one of the 11 dimensions 
were a circle, we could wrap the sheet round it once, pasting the edges 
together to form a tube. If the radius becomes sufficiently small, the rolled-up 
membrane ends up looking like a string in 10 dimensions; it yields precisely 
the Type IIA superstring. In a landmark talk at the University of Southern 
California in 1995, Ed Witten drew together all of this work on strings, branes 
and 11 dimensions under the umbrella of M-theory in 11 dimensions. Branes 
now occupy centre stage as the microscopic constituents of M-theory, as the 
higher-dimensional progenitors of black holes and as entire universes in their 
own right. 
Such breakthroughs have led to a new interpretation of black holes as 
intersecting black-branes wrapped round the seven curled dimensions of M-
theory or six of string theory. Moreover, the microscopic origin of the 
Bekenstein-Hawking entropy is now demystified. Using Polchinski's D-branes, 
Andrew Strominger and Cumrun Vafa were able to count the number of 
quantum states of these wrapped branes (Strominger and Vafa 1996). A p-
dimensional D-brane (or Dp-brane) wrapped round some number p of the 
compact directions (x4, x5, x6, x7, x8, x9) looks like a black hole (or D0-brane) 
from the four-dimensional (x0, x1, x2, x3) perspective. Strominger and Vafa 
found an entropy that agrees with Hawking's prediction, placing another 
feather in the cap of M-theory. Yet despite all of these successes, physicists 
are glimpsing only small corners of M-theory; the big picture is still lacking. 
Over the next few years we hope to discover what M-theory really is. 



Understanding black holes will be an essential prerequisite. 
 
Falsifiable predictions? 
 
The partial nature of our understanding of string/M-theory has so far 
prevented any kind of smoking-gun experimental test. This has led some 
critics of string theory to suggest that it is not true science. This is easily 
refuted by studying the history of scientific discovery; the 30-year time lag 
between the EPR idea and Bell's falsifiable prediction provides a nice example 
(see Further reading). Nevertheless it cannot be denied that such a 
prediction in string theory would be welcome. 
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In string literature one may find D-brane intersection rules that tell us how N 
branes can intersect over one another and the fraction of supersymmetry 
(susy) that they preserve (Bergshoeff et al. 1997). In our black hole/qubit 
correspondence, my students Leron Borsten, Duminda Dahanayake, Hajar 
Ebrahim, William Rubens and I showed that the microscopic description of 
the GHZ state,000 +011+101+110 is that of the N = 4;1/8 susy case of D3-
branes of Type IIB string theory (Borsten et al. 2008). We denoted the 
wrapped circles by crosses and the unwrapped circles by noughts; O 
corresponds to XO and 1 to OX, as in table 1. So the number of qubits here 
is three because the number of extra dimensions is six. This also explains 
where the two-valuedness enters on the black-hole side. To wrap or not to 
wrap; that is the qubit. 
Repeating the exercise for the N <4 cases and using our dictionary, we see 
that string theory predicts the three-qubit entanglement classification of 
figure 2, which is in complete agreement with the standard results of QIT. 
Allowing for different p-branes wrapping different dimensions, we can also 
describe "qutrits" (three-state systems) and more generally "qudits" (d-state 
systems). Furthermore, for the well documented cases of 2 × 2, 2 × 3, 3 × 3, 
2 × 2 × 3 and 2 × 2 × 4, our D-brane intersection rules are also in complete 
agreement. However, for higher entanglements, such as 2 × 2 × 2 × 2, the 
QIT results are partial or not known, or else contradictory. This is currently 
an active area of research in QIT because the experimentalists can now 
control entanglement with a greater number of qubits. One of our goals is to 
use the allowed wrapping configurations and D-brane intersection rules to 
predict new qubit-entanglement classifications. 
So the esoteric mathematics of string and M-theory might yet find practical 
applications. 
 
Further reading 
 
Read or listen to Michael Duff's debate with Lee Smolin in 2007 at the Royal 
Society for the Arts about "The trouble with physics – the rise of string 



theory, the fall of a science and what comes next" at 
www.thersa.org/events/speakers-archive/d/michael-duff. 
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